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Abstract 

Background: The recent SARS-CoV-2 pandemic raises many scientific and clinical questions.  One set of 

questions involves host genetic factors that may affect disease susceptibility and pathogenesis.  New 

work is emerging related to SARS-CoV-2; previous work on other coronaviruses in humans or other host 

species may be relevant. 

Objectives: To review existing literature on host genetic factors and their association with infection and 

disease with coronaviruses in humans and in other host species.  

Methods: We conducted a systematic review of literature on host genetic factors in humans associated 

with coronavirus outcomes. We also reviewed studies of host genetic factors associated with 

coronavirus outcomes in non-human species.  We categorized articles, summarized themes related to 

animal studies, and extracted data from human studies for analyses. 

Results: We identified 1,187 articles of potential relevance. Forty-five studies examined human host 

genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from 

one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating 

small numbers of research subjects and loci.  Multiple significant loci were identified, including 16 

related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to 

outcomes or clinical variables (of which 3 identified protective alleles).  The types of cases and controls 

used varied considerably; four studies used traditional replication/validation cohorts.  Of the other 

studies, 28 involved both human and non-human host genetic factors related to coronavirus, and 174 

involved study of non-human (animal) host genetic factors related to coronavirus.   

Key findings:  We have outlined key genes and loci from animal and human host genetic studies that 

may bear investigation in the nascent host genetic factor studies of COVID-19.  Previous human studies 
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have been limited by relatively low numbers of eligible participants and limited availability of advanced 

genomic methods. These limitations may be less important to studies of SARS-CoV-2.  

 

Key words: Coronavirus; COVID-19; Host genetic factors; SARS-CoV-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted June 3, 2020. .https://doi.org/10.1101/2020.05.30.20117788doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117788


4 

 

Introduction 

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic raises many 

scientific and clinical questions.  One unknown is the extent to which individuals vary in susceptibility to 

infection and disease (COVID-19).  Various hypotheses have been suggested to explain observed 

differences, including sex, age, comorbidities, and genetic factors.
1
  As with many complex diseases, the 

explanations likely involve a combination of genetic and non-genetic factors.  In this context, genetic 

factors involve an interplay between virus and host genetics.
2
  

Large, international studies and collaborations have formed to investigate host genetic factors related to 

COVID-19, including disease severity and susceptibility.  These investigations include analyses of existing 

public and private datasets, as well as the establishment of new cohorts (e.g., 

https://blog.23andme.com/23andme-research/genetics-and-covid-19-severity/).
3
 

While SARS-CoV-2 has seized recent attention, there are many other coronaviruses and a significant 

related body of literature exists about host genetic factors and their association with infection and 

outcomes in both humans and non-human host species.  The Coronavirinae subfamily of the 

Coronaviridae family consists of four genera.  The alphacoronaviruses include two major human 

coronaviruses, HCoV-229E (of which multiple HCoV-229E-like strains have been identified) and HCoV-

NL63.  Alphacoronaviruses that affect other species include mouse hepatitis virus (MHV), feline 

coronavirus (FCoV), which includes feline infectious peritonitis virus (FIPV) and feline enteric coronavirus 

(FECV), canine coronavirus (CCoV), and transmissible gastroenteritis coronavirus (TGEV) and porcine 

transmissible gastroenteritis coronavirus (TGEV) in pigs.  The betacoronaviruses consist of four lineages: 

lineage A (HCoV-OC43 and HCoV-HKU1), lineage B (SARS-CoV-1 and SARS-CoV-2), lineage C (Middle East 

Respiratory Syndrome (MERS) and many bat coronaviruses), and lineage D (coronaviruses only identified 

in bats to date).  HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63 can result in a variety of 
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presentations, including “common cold” and severe but rarely fatal disease; they are also frequently 

detected as co-infections with other viruses.
4
  There are other rare coronaviruses observed in humans as 

well as in other species.
5,6

 Relative to other coronaviruses, SARS-CoV-2 has unique biological properties 

and related clinical impact, but data regarding other coronaviruses may be relevant. 

In various species, much work has focused on the genes encoding the relevant coronavirus receptor, 

including effects of viral and host genetic changes.  Among other cell surface determinants,
7
 these 

receptor genes include ACE2 for HCoV-NL63,
8
 SARS-CoV-1,

9,10
 and SARS-CoV-2,

11
 ANPEP for HCoV-

229,
12,13

 FIPV,
14

 CCoV,
15

 and TGEV,
16

 DPP4 for MERS,
17-19

 and Ceacam1 for MHV.
20

  Host genetic studies 

have - to varying degrees and in different ways - analyzed these genes, as well as other genes identified 

through targeted and agnostic methods.  Studies to date have been disparate in terms of the virus and 

species studied, as well as the aims of the particular study.  This has resulted in a rich body of literature 

that is difficult to efficiently leverage for SARS-CoV-2-related work. 

We aimed to perform a review of the literature to outline previous studies of host genetic factors 

related to coronaviruses, with the objective of performing a systematic review to encapsulate genes and 

loci interrogated through these efforts.  We do not attempt to fully describe the findings nor 

recapitulate what is known about the underlying host biology related to coronavirus infection and 

disease.  As the majority of studies are candidate-driven, we did not attempt to conduct a meta-

analysis.  However, one goal is that the data presented here can help populate lists of genes that - along 

with data from related work
21-23

 - may bear scrutiny in the developing and important large-scale host 

genetic studies related to SARS-CoV-2.
24,25

  We present an overview of themes and interrogated 

genes/loci from animal studies, and perform a systematic review on human studies. 

Methods 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted June 3, 2020. .https://doi.org/10.1101/2020.05.30.20117788doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117788


6 

 

We conducted an initial search of the PubMed database (last queried May 4, 2020) using each of the 

following phrases: “host genetics”; “genetic resistance”; “genetic susceptibility”; “genetic factors”; 

“genetics”; “GWAS” along with each of the following terms: “coronavirus”; “SARS”; “MERS”; “COVID-

19”; “COVID19”.  We also identified additional articles by searching for specific coronaviruses or 

coronavirus-associated conditions (e.g., “canine coronavirus”; “middle east respiratory syndrome”) 

along with the term “genetics”.  Articles were included in the search regardless of publication date. 

Articles included electronic, ahead-of-print publications available in the PubMed database.  We also 

identified and categorized relevant articles from the references of initially selected articles.  We did not 

include articles only available on non-peer reviewed preprint servers, though recognize that a 

substantial number of these manuscripts will be on PubMed soon.  

Each abstract was reviewed by a single reviewer.  Full articles were reviewed when insufficient data 

were available in the abstract, or when no abstract was available. Publications were classified into the 

following categories: 1) Study of human host genetic factors related to coronavirus; 2) Study of non-

human (animal) host genetic factors related to coronavirus; 3) Study of non-genetic (including non-DNA-

based analyses - see further explanation below) host factors related to coronavirus, including involving 

immunopathogenesis; 4) Study of other pathogens (not coronavirus); 5) Other studies of coronavirus.  

Articles containing information in both categories 1 and 2 were identified as such; articles were 

otherwise categorized according to the lowest numerical category (e.g., an article involving both human 

host genetic factors to coronavirus as well as immunopathogenesis would be categorized into group 1.  

Articles that did not involve investigations of specific DNA-based genetic changes (e.g., transcriptomic or 

proteomic studies) were categorized into group 3, as were studies that only included analyses of sex 

without other genetic analyses.  Other publications, including: 6) Untranslated studies in another 

language (not English); 7) Not relevant (unrelated to coronavirus or other pathogens); 8) No data 

available; were removed from further analysis after categorization into these latter four categories.   
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Data from category 1 publications were manually extracted for relevant information pertaining to: 

coronavirus studied; general methods and questions analyzed; gene(s), variant(s), or loci analyzed; size 

of cohorts studied; geographic or ancestral composition of cohorts; statistical results, including (where 

available) odds ratios, confidence intervals, and p-values.   

Results 

Our search identified 1,187 articles of potential relevance (Figure 1, Supplementary Table 1).  Of these, 

45  involved study of human host genetic factors related to coronavirus (Table 1);  35 of the 45 human 

studies involved analysis of specific genes or loci (only one was a non-candidate study), while 10 

involved biological, computational, or case report studies of human host genetic factors.  Twenty-eight 

involved both human and non-human host genetic factors related to coronavirus (these largely 

investigated inter-species differences in disease susceptibility and pathogenesis, such as related to 

differences in ACE2); 174 involved study of non-human (animal) host genetic factors related to 

coronavirus; 584 involved study of non-genetic host factors related to coronavirus, including involving 

immunopathogenesis; 16 involved study of other pathogens (not coronavirus); 321 involved other 

studies of coronavirus. 18 studies were assigned to the other categories and removed. 

We organized our analysis and findings into the schema presented below. 

Animal studies 

Coronaviruses affect many species, from Beluga whales to spotted hyenas to turkeys, and sequelae of 

disease can range from apparently asymptomatic infections to severe or lethal effects on different organ 

systems, potentially manifesting as diarrheal, encephalitic, nephritic, respiratory, and other types of 

disease.
26,27

  There are numerous non-observational animal studies of coronaviruses, such as involving 

hamsters,
28-30

 guinea pigs,
31

 rats,
10,32-35

  and non-human primates.
36-38

  However, formal host genetic 
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studies have been described for some but not all species.  Many studies have involved examination of 

differences in species susceptibility and pathogenesis to human and non-human coronaviruses.
14,39-41

 

Among the host genetic studies in animals, the objectives and methods used differ significantly 

depending on the species studied.  For example, in chickens and other livestock, the types of published 

studies predictably differ from those conducted on experimental mice.  That is, while MHV represents a 

problem for mouse colonies, the rationale of the livestock studies may focus more purely on economic 

repercussions versus attempts to use a model organism to understand immunopathogenesis of 

infectious disease.
42

  The degree to which results may be reported through the scientific literature 

(versus other routes) is also anticipated to differ depending on the species studied and the reason for 

the study.  See Figure 2 for a summary of interrogated loci in animal studies. 

We describe representative studies and key findings below, but the descriptions should not be 

considered as truly comprehensive; additionally, as noted above, many studies compared susceptibility 

across species, both through cell-based assays and experimental animals.  Many investigations using 

other methods (e.g., transcriptomics or proteomics) have identified key molecules involved in 

coronavirus susceptibility and pathogenesis.  Though beyond the scope of this article, these molecules 

should also be considered in future SARS-CoV-2 host genetic studies. 

Model animal strains, experimental animals, and domesticated animals 

Chicken 

In chickens, the infectious bronchitis virus (IBV) coronavirus can cause disease affecting different organ 

systems and tissues, such as IBV-associated nephritis.  As with other species, inbred status and specific 

chicken lines impact host susceptibility, immune response, and outcomes, and virus/host genetic 

interactions have been described.
43-47

  Breeding experiments have suggested different inheritance 

patterns related to susceptibility and outcomes, and have implicated both MHC and non-MHC loci.
48,49
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Multiple GWAS investigating the immune response to IBV have identified significantly-associated 

polymorphisms in the breeds studied;
50,51

 the implicated or nearest genes include: AKT1, AvBD12, 

CEP170B, CRYL1, CWF19L2, DHRSX, FAM19A2, GABRB3, INTS9, NMNAT3, PINX1, RAB39A, VRK1, YEATS2; 

and SETBP1.
50,51

 

Domestic cat 

Felines can be infected by feline coronavirus (FCoV), which include feline infectious peritonitis (FIPV) and 

feline enteric coronavirus (FECV).
52

  As with other species, cats demonstrate a range of potential effects.  

In addition to association with traits such as age, sex, and reproductive status, purebred status and loss 

of heterozygosity has been shown to be associated with the effects of disease.  Susceptibility and 

outcomes also appear to vary between different breeds.
52-60

  A small study of feline leukocyte antigen 

(FLA)-DRB alleles did not show a statistically significant association between the number of FLA-DRB 

alleles and FCoV infection outcome.
61

  Polymorphisms in IFNG (investigated as FIP can result in 

decreased interferon-gamma levels) were shown to correlate with plasma interferon-gamma levels and 

outcomes.
62

  Polymorphisms in TNFA and CD209 were also shown to be associated with outcomes in 

one inbred line.
63

 

In addition to candidate studies, several GWAS have been performed in cats.  One small study on 

outcomes in experimentally-induced infections in random-bred cats identified one associated genomic 

region (which did not harbor any obvious candidate genes).
52

  Another small study on an inbred breed 

identified multiple candidate genes (ELMO1, ERAP1, ERAP2, RRAGA, TNSF10) but none was fully 

concordant with the FIP disease phenotype.
64

Recent studies on SARS-CoV-1 and SARS-CoV-2 have 

investigated the susceptibility of cats as well as other animals;
65

 see further details below (under 

Ferrets). 

Dromedary camel 
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Camels are an important reservoir of coronaviruses that can infect humans; this became especially 

relevant in the context of MERS.
66-68

  Many studies have analyzed factors that contribute to spread,
69

 

though the searches employed in this analysis identified relatively few host genetic studies separate 

from analyses of DPP4 receptor characteristics and tropism, including comparisons between camels, 

humans, and other species.
70-74

 

Ferret 

Several studies have investigated the susceptibility of various species to coronaviruses. One objective 

relates to identifying useful animal models of disease, in which non-human species show similar 

infection and disease outcomes to humans upon exposure to coronaviruses.
65,75,76

  For example bat, 

camel, and humans can be infected by MERS, unlike mouse, ferret, hamster, and guinea pig.  SARS-CoV-

2 replicates better in ferrets and cats than in dogs, pigs, chickens, and ducks.  One explanation involves 

genetic characteristics of the host receptor for the relevant virus.
76,77

  Additionally, within an infected 

animal, the site of viral replication appears to vary according to the species and coronavirus, and is 

additionally potentially related to tissue-specific receptor expression.
78

  This line of reasoning may also 

be relevant to age-specific differences observed with SARS-CoV-2 and human infections.
79

 

Hamster 

As noted above, hamsters have been used as model organisms to study coronaviruses, including studies 

of host receptors.  This includes studies using standard hamster cell lines as well as other approaches 

involving hamster models.
80-85

 For example, hamster models have been used to study species 

susceptibility to MHV (related to Ceacam1),
86

 how alterations of specific Dpp4 amino acids in hamster 

affect susceptibility to MERS,
71,87

 and the roles of ACE2 and CD209L in SARS-CoV-1 susceptibility.
82

 

Mouse 
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MHV has represented a challenge for the health of mouse colonies, though relatively recent 

improvements in animal care practices have been beneficial.
88

  Differences in the susceptibility of 

different mouse strains to MHV has been noted for seven decades.
89-91

  Studies have examined a 

number of different MHV strains.  These strains demonstrate different tissue tropism and have different 

effects on various mouse lines.
92

  One distinct example is the JHM strain of MHV, which causes 

encephalitis in susceptible animals.
93,94

  In the discussion below, though susceptibility and outcome 

findings will be summarized, it is important to note that studies generally focus on the interactions 

between certain MHV strains and mouse lines, and it is not always clear how well these findings 

extrapolate to other strains and lines.  

Many studies have investigated biological explanations for differences in MHV susceptibility and 

pathogenesis.
95-97

  Studies examining different laboratory mouse strains have suggested that multiple 

loci are involved.
98-111

  Early studies suggested various models, including potential monogenic/Mendelian 

explanations as well as more complex explanations involving interacting loci.
92,112-115

   

Among many studies aiming to understand the underlying pathophysiology, mouse studies originally 

focused on strains believed to be involved in host susceptibility and reaction to infection. Importantly, 

these studies have identified interactions of host genetic factors with other factors, such as the cellular 

environment,
116,117

 cell and tissue-specific effects related to viral as well as host genetics,
118-123

 and host 

age.
124-126

  Unsurprisingly, some aspects of the disease process appear to be independent of observed 

strain differences.
127

  These studies also showed that host genetic factors influence different parts of the 

disease process, from initial virus-receptor binding,
117

 to cellular viral spreading
128,129

 and multiple 

aspects of the immune response.
101,130-134

  These studies enabled the cloning of Ceacam1, the MHV 

receptor gene,
81

 as well as related work regarding how genetic changes affecting this receptor confers 

MHV resistance in SJL mouse lines via inhibition of viral integration into host cells.
103,106,135,136
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In addition to the above studies, MHV-based mouse studies have used transgenic models to directly test 

the role of implicated pathways (summarized in Table 2). Not surprisingly, the majority of work in mouse 

models have focused on pathways already implicated in viral infection susceptibility including adaptive 

immune responses including both humoral and cellular, specific cytokine and immune receptor 

pathways, viral receptors, complement pathway, apoptosis, autophagy, and tissue repair. These studies 

have prominently implicated Type I (Gβ) and II (γ) interferon responses in host response and 

predominantly protection against MHV infection. However, not all pro-inflammatory pathways are 

protective.  For example, complement activation promotes tissue damage caused by MHV infection, 

highlighting the complex interplay between the host and virus.  In addition to targeted gene disruptions 

described above, a GWAS using a recombinant inbred mouse panel implicated Trim55, which is involved 

in vascular cuffing and inflammation in response to SARS-CoV-1.
137

  

Additional transgenic studies have investigated multiple biologic effects as well as returning to questions 

regarding susceptibility of different strains.
138

  Other mouse models (including knockouts, specific knock-

in mutations, humanized mice, and other models involving genetic manipulation) have been used to 

study human pathogens such as SARS-CoV and MERS; revealing similar properties for viral receptors, 

Dpp4 for MERS, Ace2 for SARS-CoV, cytokine and immune receptor pathways, and complement pathway 

as with mouse models of MHV.  Intriguingly, there are differences between the importance of interferon 

pathways in host response to SARS-CoV1, where these pathways are dispensable as compared to MHV, 

where they are protective. Together, these different pathogen models have shown overlapping and 

unique pathways of host response between coronaviruses and highlight the potential relevance for 

SARS-CoV-2. See also the Additional papers on humans and other species section regarding further 

examples of studies involving mice and humans, as well as other species. 

Pigs 
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Pigs can be infected by transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus 

(PEDV), as well as the more recently-identified porcine deltacoronavirus (PDCoV).  Like coronavirus 

disease in chickens, these diseases can have economic effects on the food industry,
139

 and analyses aim 

to address ways to ameliorate disease, such as the development of vaccines.  Importantly, variants (both 

natural and experimentally-induced) may have different effects on different coronaviruses.  For 

example, aminopeptidase N, encoded by ANPEP (also called APN) was reported as a functional receptor 

for TGEV and PEDV (as well as HCoV-229E), but multiple models, including CRISPR/Cas9- generated 

knock-outs, show differences in cellular susceptibility to TGEV and PEDV.
139,140

  In another study, 

infection by PEDV and TGEV correlated positively with ANPEP expression, but PEDV and TGEV could 

infect ANPEP-positive and negative enterocytes, with differences observed between viral strains. 

Overall, the results suggest the presence of an additional receptor.
141

  Building on this type of work, site-

specific editing of ANPEP has been suggested as a potential means to breed resistant animals.
142

  Studies 

focusing on PEDV have shown that knock-out of CMAH (hypothesized to affect cellular binding) does not 

result in immunity, but may improve outcomes.
143

 

Rats 

Rats can be affected by rat coronaviruses, and can be hosts to a number of different coronaviruses that 

affect other species.
144,145

  Rats have been used as model systems to investigate MHV, including through 

cellular-based assays.
146,147

  Several studies have examined rat susceptibility to various coronaviruses.  As 

with many other studies, these have implicated key interactions between viral and host genetics that 

affect species and tissue tropism [17151094].
33

  In addition to computational approaches examining 

receptor characteristics, such as involving ACE2 in the context of SARS-CoV-1,
10

 experimental studies 

suggest that rats are not susceptible to MERS based on Dpp4 characteristics.
148

  

Non-domesticated animals 
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As described, many species can be infected by coronaviruses.  These species include wild as well as 

domesticated animals.  The below section provides select examples of genetic studies on wild animals.  

Others studies been conducted on coronaviruses (as well as other pathogens),
149

 especially related to 

host ranges or reservoirs and involving host/pathogen co-evolution.
150,151

  Related to host genetic 

studies that are particularly relevant to the current SARS-CoV-2 pandemic (e.g., pangolin), our searches 

did not identify relevant articles. 

Cheetah 

Among wild animals, severe population bottlenecks (resulting in reduced genetic diversity) in cheetahs 

has been used to explain their increased susceptibility to infection by FIPV as well as other infectious 

diseases.  Several such bottlenecks appear to have occurred in cheetah, due to a combination of 

factors.
152-154

  Among possible explanations for this susceptibility, genetic uniformity of the major 

histocompatibility complex (MHC) has been suspected to be involved.
155

 

Civet 

Studies have focused on palm civets (as well as other species) related to zoonotic implications as this 

species has been implicated as the reservoir associated with introduction of SARS-CoV-1 into humans.  

Specifically, questions about host receptor characteristics (ACE2) have been described in the context of 

SARS-CoV-1.
156-158

  As with other coronaviruses and species, the interactions of viral and host genetics 

have been shown to be important.
159,160

 

Bat 

As a natural reservoir for many coronaviruses, bats have been studied more extensively than other 

species outside of laboratory-based animals and livestock.  Studies have included co-evolutionary 

studies between coronaviruses and the genomes of bat hosts (e.g., by correlating phylogenetic analyses 

of bat coronaviruses with CYTB in multiple bat species)
161

 as well as genetic/biologic studies related to 
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host genetic factors.  These have involved well-studied genes such as ACE2 with SARS-CoV-1
162,163

 and 

DPP4 with MERS.
164,165

  In addition to allowing analyses of host susceptibility, these and similar studies 

help provide estimates for the time-frame of coronavirus circulation in species and populations, and 

explore cross-species transmission.
150

 

Human 

Details of the human studies are presented in Table 1, Figure 3, and Supplementary Table 2. Forty-five 

studies were initially identified by the methods described. Of these, 35 involved association or other 

studies related to human host genetic factors (see summary in the next paragraph).  Ten others involved 

biological, computational, or other non-genetic association studies.  Many other studies were identified 

that used a combination of human and animal models, but were categorized separately; additionally, 

many studies that might be considered genetic studies - if the definition were applied less stringently - 

were grouped in category 3.  For example, studies have examined how specific genes are involved in 

aspects of viral disease but did not strictly study how DNA-based host genetic variants affect this 

process.  In summary, these ten included mapping of a susceptibility locus to HCoV-229E to 

chromosome 15.
166

  Multiple studies examined the biological effects of mutant genes. Studying the 

effects of mutant ACE2 on SARS-CoV-1 entry provided evidence that the cytoplasmic tail of ACE2 is not 

required for SARS-CoV-1 penetration.
167

  Studies of mutant TRIM56 on antiviral activity against HCoV-

OC43 and other viruses showed that anti-HCoV-OC43 activity relies solely upon TRIM56 E3 ligase 

activity; this appears different from the mechanisms related to other viral pathogens.
168

  Knockout 

culture cells and nonsynonymous variant PPIA models result in limitation of HCoV-229E replication.
169

  

(Please note that we did not separately or exhaustively investigate human genetic experiments involving 

cell culture systems.)  Specific variants in IFITM genes (IFITM1 and IFITM3 were studied) modulate the 

entry of multiple human coronaviruses (HCoV-229E; HCoV-NL63; HCoV OC43; MERS-CoV; and SARS-CoV-

1 were studied).
170

  Computational models suggest that, while most ACE2 variants have similar binding 
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affinity for SARS-CoV-2 spike protein, certain variants (rs73635825 and rs143936283) demonstrate 

different intermolecular interactions with the spike protein.
171

  An in silico analysis of viral peptide-MHC 

class I binding affinity related to HLA genotypes for SARS-CoV-2 peptides, as well as potential cross-

protective immunity related to four common human coronaviruses, provides evidence that HLA-B*46:01 

may be associated COVID-19 vulnerability, while HLA-B*15:03 may enable cross-protective T-cell based 

immunity.
172

  A recent study on viral cell entry showed that SARS-CoV-2 uses ACE2 for cell entry and 

TMPRSS2 for S protein priming; potential interventions based on these results include TMPRSS2 

inhibition and convalescent sera.
173

  In addition to these examples, there are undoubtedly other 

biological, computational, and other studies examining how changes in and affecting key proteins may 

modulate disease. 

Of the 35 human studies meeting the host genetic study criteria described above, 32 (91%) involved 

SARS-CoV-1, while 3 (9%) involved SARS-CoV-2.  Two of the three SARS-CoV-2 studies were case reports 

(one on a single family, the other on two patients with a rare immunodeficiency) without specific studies 

related to host factors; it is anticipated that many more studies on SARS-CoV-2 will be published soon.  

All of the association studies except one were candidate-gene analyses based on genes hypothesized to 

be important in disease susceptibility or clinical variables/outcome.  The exception was a meta-analysis 

of 386 studies on susceptibility to tuberculosis, influenza, respiratory syncytial virus, SARS-CoV-1, and 

pneumonia.
174

   

Candidate studies ranged from studies of single variants to studies of over 50 genes selected due to 

biological plausibility; seven of these studies focused on HLA alleles.  Sixteen significant loci related to 

susceptibility to coronavirus were reported (of which 7 identified protective alleles).  Sixteen significant 

loci related to outcomes or clinical variables were reported (of which 3 identified protective alleles).  The 

types of cases and controls used varied.  Only four studies used separate cohorts for 

replication/validation.  However, the studies used many different types of cases and controls, including 
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within the same study.  For example, some studies compared healthcare workers with SARS-CoV-1 

infection with healthcare workers who tested negative. Others compared data from individuals with 

documented infection with data from control samples taken from blood donors.  Four studies conducted 

laboratory-based biological studies in addition to association analyses.  These studies are summarized in 

Table 1 and Figure 3; more details are available in Supplementary Table 2.   

Additional papers on humans and other species 

As described, human and animal studies have examined various host factors related to coronavirus 

infection.  For example, human
175

 and animal
33,52,125

 studies have implicated age as having significant 

associations with outcomes; age appears to be strongly correlated with COVID-19 outcomes.
176

  The 

overall explanations remain unclear, but could at least partially involve age-related gene expression.  Sex 

also appears to have a role.  Human studies of SARS-CoV-1 and SARS-CoV2 suggest a correlation 

between sex and certain clinical parameters, perhaps rooted in sex-based or related immunologic 

differences.
175,177,178

  However, separating biological differences from sex-related cultural practices (e.g., 

different rates of social distancing) may be difficult. 

Animal studies also suggest sex effects in multiple species, such as related to disease severity.
57,179

   

Multiple studies examined different genes/proteins to determine disease susceptibility, transmissibility, 

and pathogenesis in various species.  In addition to humanized genes, such as used in mouse models, 

studies have involved a combination of computational and biological approaches, and have investigated 

the viral entry receptors ACE2 in SARS-CoV-1
10,35,157,158,180-183

 and SARS-CoV-2
184

 (for which there already 

exists a large body of unpublished and preprint work) and DPP4 in MERS.
71,148,185-188

 Among other 

findings, these studies examined specific protein residues that are critical in viral-host interactions 

[18448527].
157

  Other studies examined manipulations of various genes/proteins to study the functional 

biological effects, including of ANPEP,
189

 GLTSCR2,
190

 IFITM1, IFITM2, and IFITM3,
191

 and MAVS.
192
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Discussion: human studies 

Traditional genome-wide methods have been applied to human viral infections generally,
174,193

 but 

results have not been specific to coronaviruses, and it is unclear to what extent the observations are 

relevant to the current pandemic.  Several dozen studies have investigated human genetic factors 

related to coronavirus infection.  However, these studies have been limited by several potential factors.  

For endemic human coronaviruses, the mildness of disease may have deprioritized these studies; similar 

observations may explain the relative dearth of serologic knowledge related to these pathogens.
6
  For 

coronaviruses associated with more severe human disease, such as MERS and SARS-CoV-1, the fact that 

these epidemics were limited more than the current pandemic crisis may have fortunately led to a lack 

of cases with which one might conduct traditional association studies (unlike some other respiratory 

infections leading to more widespread disease).
194,195

  Additionally, these two severe conditions 

primarily affected human populations prior to the technological developments that led to wide 

availability of much cheaper and faster genomic sequencing.
196

   

As shown (Supplementary Table 2), the small sample sizes of previous studies may have led to the 

preponderance of candidate gene studies.  The sample sizes may also have precluded significant findings 

due to limitations of statistical power and the ability to replicate or validate findings.  As previous human 

studies occurred in areas of the world affected by the coronavirus studied, it is possible that results from 

these studies would not extrapolate to other populations.  Finally, different genes and loci are involved 

than those previously hypothesized.  That is, hypothesis-free approaches may identify significant loci 

that were not identified by candidate approaches. 

Based on announcements about multiple large-scale projects on host genetic factors and SARS-CoV-2, as 

well as the existence of larger genomic datasets that can be mined quickly and new methods that can be 
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used to address biological questions,
197

 it is anticipated that considerable efforts - and an unfortunately 

large pool of research subjects - and may yield significant new results quickly.   

Limitations 

There are multiple limitations to our summaries and analyses.  First, it is likely that relevant articles were 

missed by our search process, and that key findings - including the study of certain genes - were 

therefore omitted.  Along these lines, important findings within identified articles may also have been 

missed.  Second, this analysis focused on DNA-based variants.  These DNA-based genetic changes 

include those studied and identified through association studies as well as genes that were manipulated 

in experimental approaches, such as via knockout models to understand disease pathogenesis.  Related 

‘omic approaches, such as targeted or broad transcriptomic or proteomic studies, are frequently used to 

understand important aspects of disease.  These approaches can lead to knowledge regarding specific 

genetic changes.  For example, observed transcriptomic changes may enable the identification of 

important DNA-based variants that explain disease by correlating transcriptomic data with results of 

DNA sequencing.
198

  However, we categorized non-DNA based ‘omic approaches separately from DNA-

based studies, and did not attempt to comprehensively recapitulate what is known about host reaction 

to disease.  Finally, as the studies varied in many aspects, such as how cases and controls were defined, 

and which loci were interrogated, we were careful about comparing or combining data between 

different studies. 

 

Table 1.  Summary of human studies (related to specific genes or loci) on host genetic factors related to 

coronaviruses.  More details are available in Supplementary Table 2. 

Human Method(s) or approach(es) Key findings PMID 
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coronavirus 

studied (other 

coronaviruses 

or pathogens) 

SARS-CoV-1 Analysis of association of HLA 

gene polymorphisms with 

susceptibility to SARS-CoV-1 

infection or clinical 

parameters  

Association of HLA-B* 4601 with 

severity of SARS-CoV-1 infection  

12969506
199

 

SARS-CoV-1 Analysis of association of HLA 

gene polymorphisms with 

susceptibility to SARS-CoV-1 

infection 

HLA-B*0703, HLA-DRB1*0301 and 

co-inheritance of HLA-B*0703 and 

HLA-B60) were associated with 

susceptibility to SARS-CoV-1 

infection 

15243926
200

 

SARS-CoV-1 Analysis of association of ACE2 

polymorphisms with SARS-

CoV-1 clinical parameters  

No association of ACE2 

polymorphisms with SARS-CoV-1 

outcomes 

15331509
201

 

SARS-CoV-1 Analysis of association of ACE 

insertion/deletion (I/D) 

polymorphism with 

susceptibility to SARS-CoV-1 or 

ACE D allele was associated with 

hypoxemia in SARS-CoV-1 

infections 

15381116
202
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clinical parameters  

SARS-CoV-1 Analysis of association of 

OAS1, PKR, MX1 

polymorphisms with 

susceptibility to SARS-CoV-1 or 

clinical parameters 

OAS1 rs3741981 and rs2660 were 

associated with SARS-CoV-1 

susceptibility; MX1 rs2071430 was 

associated in hypoxemia in SARS-

CoV-1 infections 

15766558
203

 

SARS-CoV-1 Analysis of association of ACE 

insertion/deletion (I/D) 

polymorphism  with 

susceptibility to SARS-CoV-1 or 

clinical parameters 

No association was found with 

ACE insertion/deletion (I/D) 

polymorphism and susceptibility 

to SARS-CoV-1 or clinical 

parameters 

15819995
175

 

SARS-CoV-1 Analysis of association of MBL 

polymorphisms susceptibility 

to SARS-CoV-1 or clinical 

parameters and biological 

study of MBL  

Serum MBL was lower in patients 

with SARS-CoV-1 infections than 

controls, and haplotypes 

associated with lower serum MBL 

were more frequent in patients 

with SARS-CoV-1 infections than 

in control subjects, but there was 

not association with mortality 

15838797
204

 

SARS-CoV-1 Analysis of association of ACE2 

polymorphisms and 

No association was found with 

ACE2 polymorphisms and 

15937940
205
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susceptibility to SARS-CoV-1 

infection 

susceptibility to SARS-CoV-1 

infection 

SARS-CoV-1 Analysis of association of MBL 

polymorphisms and 

susceptibility to SARS-CoV-1 

infection 

MBL rs1800450 was associated 

with susceptibility to SARS-CoV-1 

infection 

16170752
206

 

SARS-CoV-1 Analysis of association of 

FCGR2A and MBL 

polymorphisms and 

susceptibility to SARS-CoV-1 

infection or clinical parameters 

Homozygosity for FCGR2A 

rs1801274, as well as a linear 

trend of FCGR2A genotypes, was 

associated with severe SARS-CoV-

1 infection 

16185324
207

 

SARS-CoV-1 Analysis of association of 

CLEC4M VNTR polymorphism 

with susceptibility to SARS-

CoV-1 and biological studies of 

cells with these 

polymorphisms 

Homozygosity for the CLEC4M 

VNTR polymorphism was 

associated with susceptibility to 

SARS-CoV-1, and homozygous 

cells had higher binding capacity 

for SARS-CoV-1, higher 

proteasome-dependent viral 

degradation, and lower capacity 

for trans infection. 

 

16369534
208
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SARS-CoV-1 Analysis of association of HLA 

polymorphisms with SARS-

CoV-1 susceptibility  

HLA-Cw*0801 was associated with 

susceptibility to SARS-CoV-1 

infection 

16455884
209

 

SARS-CoV-1 Analysis of association of 

polymorphisms in 65 genes 

with SARS-CoV-1 viral 

shedding 

SARS-CoV-1 shedding was 

associated with alleles of IL18, 

IL1A, RELB, and FLG2 

16652313
210

 

SARS-CoV-1 Analysis of association of OAS1 

and MX1  polymorphisms with 

susceptibility to SARS-CoV-1 

OAS1 3'-UTR rs2660 and 

MX1 promoter rs2071430 were 

associated with susceptibility to 

SARS-CoV-1 

16824203
211

 

SARS-CoV-1 Analysis of association of 

CLEC4M VNTR polymorphism 

with susceptibility to SARS-

CoV-1 infection 

No association was found with 

homozygosity for the CLEC4M 

VNTR polymorphism and 

susceptibility to SARS-CoV-1 

 

17534354
212

 

SARS-CoV-1 Analysis of association of 

CLEC4M VNTR polymorphism 

with susceptibility to SARS-

No association was found with 

homozygosity for the CLEC4M 

VNTR polymorphism and 

17534355
213
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CoV-1 infection susceptibility to SARS-CoV-1 

 

SARS-CoV-1 Analysis of association of CCL5, 

CXCL9, and CXCL10 

polymorphisms with 

susceptibility to SARS-CoV-1 

infection or clinical parameters 

CCL5  rs2107538 was associated 

with susceptibility to SARS-CoV-1 

in one cohort and severe 

outcomes of SARS-CoV-1 infection 

in another cohort  

17540042
214

 

SARS-CoV-1 Analysis of association of 

FCER2 and ICAM3 

polymorphisms with 

susceptibility to SARS-CoV-1 or 

clinical parameters 

Homozygosity for ICAM 

rs2304237 was associated with 

higher LDH levels and lower total 

WBC counts 

17570115
215

 

SARS-CoV-1 Analysis of association of 

CD14, TLR2, and TLR4 

polymorphisms with 

susceptibility to SARS-CoV-1 or 

clinical parameters 

CD14 rs2569190 was associated 

with severe SARS-CoV-1 infection 

(this data was also combined with 

previous data, suggesting that this 

and FCGR2A-RR131 are risk 

genotypes for severe SARS-CoV-1 

infection) 

17913858
216

 

 

SARS-CoV-1 Analysis of association of TNF 

polymorphisms with 

TNF polymorphisms were 

associated with susceptibility to 

18312678
217
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interstitial lung fibrosis and 

femoral head osteonecrosis in 

discharged SARS-CoV-

1patients 

SARS-CoV-1 and with femoral 

head necrosis in discharged SARS-

CoV-1patients 

SARS-CoV-1 Analysis of association of 

polymorphisms in IL12RB1 

with susceptibility to SARS-

CoV-1 or clinical outcomes 

IL12RB1(+1664) polymorphism 

was associated with susceptibility 

to SARS-CoV-1 infection 

18478121
218

 

SARS-CoV-1 Analysis of association of 

polymorphisms in 4 C-type 

lectin genes with susceptibility 

to SARS-CoV-1 infection 

No association of polymorphisms 

in C-type lectin genes genes with 

SARS-CoV-1 susceptibility 

18697825
219

 

SARS-CoV-1 Analysis of association of 

polymorphisms in 9 

inflammatory response genes 

with susceptibility to SARS-

CoV-1 or clinical outcomes 

No association of polymorphisms 

in inflammatory response genes 

with SARS-CoV-1 susceptibility or 

clinical outcomes 

18708672
220

 

SARS-CoV-1 Analysis of association of 

polymorphisms in MASP2 with 

susceptibility to SARS-CoV-1 

infection 

No association of MASP2 

polymorphisms with SARS-CoV-1 

susceptibility 

19405982
221
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SARS-CoV-1 Analysis of association of HLA 

polymorphisms with SARS-

CoV-1 susceptibility 

HLA-DRB1*12 was more frequent 

in SARS-CoV-1 patients versus 

controls;  HLA-DRB1*1202 

showed the strongest association 

with SARS-CoV-1 infection in a 

dominant model 

19445991
222

  

SARS-CoV-1 Analysis of association of 

polymorphisms in 64 genes  

with susceptibility to SARS-

CoV-1 infection 

CXCL10(-938AA) is protective (but 

appears jointly with other 

variants);  FGL2(+158T/*) is 

associated with higher 

susceptibility unless combined 

with CXCL10/(-938AA), when 

jointly is associated with lower 

susceptibility 

19590927
223

 

SARS-CoV-1 Analysis of association of 

CD209 rs4804803 with SARS-

CoV-1 outcomes 

CD209 polymorphism rs4804803 

is associated with lower LDH 

levels (and therefore, worse 

prognosis) 

20359516
224
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SARS-CoV-1  Biological study and analysis of 

MX1 promoter polymorphisms 

with suppressed interferon 

beta induction and association 

of MX1 promoter 

polymorphisms with 

susceptibility to SARS-CoV-1 

infection 

Differences were observed in 

binding affinity to nuclear proteins 

related to IFN-beta stimulation;  

MX1 rs2071430 was associated 

with lower risk of SARS-CoV-1 

infection 

20462354
225

 

SARS-CoV-1 Analysis of association of HLA 

gene polymorphisms with 

SARS-CoV-1 susceptibility  

No significant associations (after 

correction) HLA gene 

polymorphisms with SARS-CoV-1 

susceptibility were identified 

20864745
226

 

SARS-CoV-1 Biological study of in vitro 

functional effects of rs4804803 

and analysis of association of 

CD209 rs4804803 with SARS-

CoV-1 outcomes 

CD209 polymorphism rs4804803 

was associated with lower risk of 

high admission LDH levels, and 

may contribute to a reduced 

immune response/reduced lung 

injury during disease progression 

20864747
227

 

SARS-CoV-1 Analysis of association of AHSG 

and CYP4F3A polymorphisms 

with SARS-CoV-1 susceptibility  

AHSG polymorphism rs2248690 

was associated with SARS-CoV-1 

susceptibility (as well as higher 

21904596
228
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AHSG serum concentration) 

SARS-CoV-1 Analysis of association of HLA 

polymorphisms with SARS-

CoV-1 susceptibility  

HLA-Cw*1502 conferred 

resistance against SARS 

infection is associated with 

resistance to SARS-CoV-1 infection 

21958371
229

 

SARS-CoV-1 Analysis of association of HLA 

polymorphisms with SARS-

CoV-1 susceptibility and 

outcome 

No association of HLA 

polymorphisms with SARS-CoV-1 

susceptibility and outcome were 

identified 

 

24643938
230

 

SARS-CoV-1 Analysis of association of CCL2 

and MBL polymorphisms with 

suceptibility to SARS-CoV-1 

infection 

Variants in MBL (rs1800450) and 

CCL2 (rs1024611) (CCL2) were 

cumulatively associated with 

SARS-CoV-1 susceptibility  

25818534
231

 

SARS-CoV-1 (and 

other 

respiratory 

pathogens) 

Meta-analysis of 386 studies 

on susceptibility to 

tuberculosis, influenza, 

respiratory syncytial virus, 

SARS-CoV-1, and pneumonia  

In a pooled model, variants in IL4 

were positively associated with 

susceptibility after multiple 

testing correction 

26524966
174

 

SARS-CoV-2 Case report of death due to Suggestion of genetic 32277694
232
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COVID-19 in three previously 

healthy adult brothers 

predisposition due to apparent 

familial clustering 

SARS-CoV-2 Case reports of two patients 

with X-linked 

agammaglobulinemia (and 

documented pathogenic 

variants in BTK) 

Patients recovered, suggesting 

that B cell response might not be 

required to overcome the SARS-

CoV-2 infection 

32319118
233

 

SARS-CoV-2 Analysis of association of 

IFITM3 rs12252 

with clinical outcomes of 

SARS-CoV-2 infection 

Significant association of 

homozygosity IFITM3 rs12252 

 with disease severity 

32348495
234

 

Abbreviations: CCoV: canine coronavirus; FCoV: feline coronavirus; human coronavirus 229E: HCoV-

229E; human coronavirus NL63: HCoV NL63; human coronavirus OC43: HCoV OC43; LDH: lactate-

dehydrogenase; MBL: Mannose-binding lectin; MERS-CoV: middle east respiratory syndrome 

coronavirus; SARS-CoV-1: severe acute respiratory syndrome coronavirus 1; SARS-CoV-2: severe acute 

respiratory syndrome coronavirus 2; SL-CoV: SARS-Cov-1-like coronaviruses; TGEV: porcine transmissible 

gastroenteritis coronavirus; WBC: white blood cell; WT: wild-type 

 

Table 2.  Summary of relevant mouse studies related to coronavirus.  Note that the different studies 

have disparate objectives, many of which more directly involve aspects of immunopathogenesis versus 

standard host genetic questions regarding why specific genetic variants may affect disease susceptibility 

and outcomes. 
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Mouse (Human 

gene) 

Method(s) or 

approach(es) 

Pathway: Key findings PMID 

Ace2 (ACE2) Humanized mice, 

SARS-CoV1 

Viral receptor: humanized Ace2 mice, 

increased infection, permissive gene 

18495771
235

 

Atg5 (ATG5) KO, MHV infection Autophagy: required for MHV 

replication, permissive gene 

14699140
236

 

Atp1a1 (ATP1A1)  knockdown and 

chemical inhibition 

across many 

coronaviruses 

Ion channel: chemical inhibition or 

gene silencing, results in blocking viral 

entry, permissive gene 

25653449
237

 

B2m (B2M) KO, MHV infection Adaptive immunity: MHC Class I/CD8 T-

cells required for host immune 

response, protective gene 

8799201
238

; 

10023135
239

 

Bnip3 (BNIP3) Cull culture model, 

MHV infection 

Apoptosis: pro-apoptotic gene is 

suppressed upon viral entry, likely 

protective 

14599795
240

 

C3 (C3) KO, SARS-CoV1 Complement pathway: decreased 

complement activation leads to less 

30301856
241
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severe disease, implicated immune 

driven component of disease, gene is 

permissive  

C5ar1(C5AR1) KO, MHV infection Complement pathway: Complement 

pathway exacerbates hepatitis, KO 

decreases manifestations, decreased 

susceptibility, permissive gene 

24604562
242

 

Ccr1 (CCR1) KO, MHV infection Cytokine pathways: Loss of Ccr1 

increased mortality, protective gene 

18158733
243

 

Ccr2 (CCR2) KO, MHV infection Cytokine pathways: Ccr2 required for 

clearance of the virus from CNS, KO 

increased susceptibility, protective 

gene 

15518805
244

 

Ccr5 (CCR5) KO, MHV infection Cytokine pathways: KO decreased 

severity of demyelination disease, 

permissive gene 

11543653
245

 

Cd200r1(CD200R1) KO, MHV infection Immune receptor: Cd200 KO increases 

clearance of MHV, decreases 

susceptibility, permissive gene 

22615569
179

 

Ceacam1 Isoform specific Viral receptor: KO are fully resistant to 11483763
246

; 
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(CEACAM1) transgenic and KO, 

MHV infection 

infection, liver, and CNS 

manifestations, permissive gene 

15331748
247

 

Cxcl10 (CXCL10) KO, MHV infection Cytokine pathways: Interferon related 

(T2), KO leads to increased mortality, 

protective gene  

17142734
248

; 

17617609
249

 

Cxcl9 (CXCL9) KO, MHV infection Cytokine pathways: Interferon related 

(T2), KO had increased MHV associated 

mortality, protective gene 

18973912
250

 

Dpp4 (DPP4) Various transgenic 

and humanized 

models, MERS 

infection 

Viral receptor: humanized Dpp4 or 

mutations, deletions in mouse Dpp4 

leads to MERS induced ARDS, 

permissive gene 

24574399
251

; 

25653445
252

; 

29691378
253

; 

30142928
254

; 

31883094
255

 

Ebi3 (EBI3) KO, MHV infection Cytokine pathways: Interferon related 

(T2), KO leads to increased mortality, 

protective gene 

23102608
256

 

Foxn1 (FOXN1) KO, MHV infection Adaptive immunity: Athymic mice 

lacking T-cells unable to clear infection 

cause severe disseminated disease, 

protective gene 

8799201
238

;  

15070459
257
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H2-Ab1 (H2AB1) KO, MHV infection Adaptive immunity: MHC Class I/CD4 T-

cells required for host immune 

response, protective gene 

8799201
238

 

Ifih1 (IFIH1)  KO, MHV infection Cytokine pathways: Interferon related 

(T1), KO more severe, disseminated 

MHV infection, decreased survival, 

protective gene  

26423942
258

 

Ifnar, (IFNAR) KO, MHV infection Cytokine pathways: Interferon related 

(T1), KO leads to increased mortality 

and higher viral titers, protective gene  

18667505
259

;  

19215224
260

;  

19650917
261

 

Ifnar1 (IFNAR1) KO, SARS-CoV1 Interferon pathway: Type 1, II and III 

interferon does not alter infection for 

SARS-CoV-1, in contrast to MHV 

20386712
262

 

Ifng (IFNG) KO, MHV infection Cytokine pathways: Interferon related 

(T2), KO has increased mortality, 

decreased viral clearance, protective 

gene 

 9973424
263

;  

11864749
138

 

Ifngr1 (IFNGR1) KO, MHV infection Cytokine pathways: Interferon related 

(T2), KO has increased mortality, 

decreased viral clearance, protective 

8752933
264

;  

15039522
265

;  
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gene 20042510
266

 

Ifngr1 (IFNGR1)  KO, SARS-CoV1 Interferon pathway: Type 1, II and III 

interferon does not alter infection for 

SARS-CoV-1, in contrast to MHV 

20386712
262

 

Ighm (IGHM) KO, MHV infection Adaptive immunity: B-cell deficient 

develop subclinical infection and 

transmit virus for increased time span, 

protective gene 

15027615
267

 

Il1r1 (IL1R1) KO, MHV infection Cytokine pathways: KO shows reduced 

viral replication, mortality, and disease 

progression, permissive gene 

26367131
268

 

Mavs (MAVS) KO, MHV infection Cytokine pathways: Interferon related 

(T1), viral sensor, studied in the 

presence of attenuated virus, 

protective gene 

29717007
269

 

Myd88 (MYD88) KO, rMA15 

infection 

Cytokine pathways: downstream of 

multiple pathways, KO increased 

susceptibility to MHV infection and 

mortality, protective gene 

19079579
270
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Prkdc (PRKDC) KO, MHV infection Adaptive immunity: Loss of T- and B- 

cells cause severe disseminated 

infection, protective gene 

8799201
238

 

Rag1 (RAG1) KO, MHV infection Adaptive immunity: Loss of mature T- 

and B-cells leads to failure to clear 

infection, protective gene 

17142734
248

; 

18973912
250

; 

25428866
271

; 

27604627
272

 

Serpine1 

(SERPINE1) 

KO, SARS-CoV1 

infection 

Tissue remodeling: KO mice are more 

susceptible to infection and 

inflammation, protective gene 

23919993
273

 

Stat1 (STAT1) KO/KI, HCoV-229E 

infection 

Cytokine pathways: Interferon related 

(T1), KO increased susceptibility HCoV 

in transgenic APN model, protective 

15919828
274

 

Stat1 (STAT1) KO, SARS-CoV-1 Cytokine pathways, KO worsens 

disease, increases susceptibility, 

protective gene 

20386712
262

;  

23142821
275

 

Stat6 (STAT6) Conditional KO, 

LysM and FoxJ1, 

Stat1/Stat6 -/- 

double knockout, 

Cytokine pathways: conditional KO of 

Stat1 in macrophages but not ciliated 

epithelial cells showed pulmonary 

disease, double knockout of Stat1 and 

23015710
276
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SARS-CoV-1 Stat6 relieves pulmonary disease, 

implicates alternatively activated 

macrophages, permissive gene 

Ticam2 (TICAM2) KO, SARS-CoV1 Immune receptor: TLR-mediated, KO 

developed more severe infection, 

increased viral titer, and increased 

weight loss, protective gene 

28592648
277

 

Tlr2 (TLR2) KO, MHV infection Immune receptor: KO decreases 

inflammatory response, protective 

gene 

19740307
278

 

Tlr3 (TLR3) KO, SARS-CoV1 Immune receptor: TLR mediated, KO 

more susceptible for SARS-CoV-1 

infection, although no increased 

mortality, protective gene 

26015500
279

 

Tlr4 (TLR4) KO, SARS-CoV1 Immune receptor: TLR mediated, KO 

more susceptible for SARS-CoV-1 

infection, although no increased 

mortality, protective gene 

26015500
279

 

Tlr7 (TLR7) KO, MHV infection Immune receptor: viral sensor, KO 

prolonged infection, protective gene 

29717007
269
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Tram1 (TRAM1) KO, SARS-CoV1 Immune receptor: TLR mediated, KO 

more susceptible for SARS-CoV-1 

infection, although no increased 

mortality, protective gene 

26015500
279

 

Trif (TRIF) KO, SARS-CoV1 Immune receptor: TLR mediated, KO 

more susceptible to SARS-CoV-1 

infection, more severe infection with 

increased interferon signaling, 

protective gene 

26015500
279

 

Trim55 (TRIM55) KO, SARS-CoV1 Uncharacterized pathway: contributed 

to lung pathology, KO decreased 

severity, permissive gene 

26452100
137

 

Usp18 (USP18) KO, MHV infection Cytokine pathways: Interferon related 

(T1), KO leads to increased survival, 

decreased pathology and viral titer, 

gene is permissive 

24648452
280

 

Abbreviations: ARDS: acute respiratory distress syndrome; CNS: central nervous system; KI: knock-in; 

KO: knockout; MERS: middle east respiratory syndrome; MHC: major histocompatibility complex; MHV: 

mouse hepatitis virus; SARS-CoV-1: SARS-CoV-1: severe acute respiratory syndrome coronavirus 1; T1: 

type 1; T2: type 2; TLR: Toll-like receptor 

Figure Legends 
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Figure 1.  Description of articles identified through PubMed searches described in Methods. 

Figure 2.  Genes investigated in animal studies related to coronavirus disease.  Human genes are shown 

only for those studies in multiple species analyses; other human gene details are presented elsewhere. 

Figure 3.  3A: Significant genetic associations with human susceptibility to coronavirus disease.  Both 

protective and permissive genes are shown.  Only studies reporting odds ratios (OR) and confidence 

intervals are shown.  3B: Significant genetic associations with human clinical variables and outcomes 

related to coronavirus disease.  Both protective and permissive genes are shown.  Only studies reporting 

odds ratios (OR) and confidence intervals (CI) are shown (PMID 32348495 did not include CI). 
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